Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtre
Ajouter des filtres

Base de données
Année
Type de document
Gamme d'année
1.
Journal of Public Health in Africa ; 14(S2) (no pagination), 2023.
Article Dans Anglais | EMBASE | ID: covidwho-20238990

Résumé

Introduction. Dengue Hemorrhagic Fever (DHF) is still a public health problem even in the era of the COVID-19 pandemic in 2020, including in Indonesia. This study aimed to analyze the incidence of DHF based on the integration of climatic factors, including rainfall, humidity, air temperature, and duration of sunlight and their distribution. Materials and Methods. This was an ecological time series study with secondary data from the Surabaya City Health Office covering the incidence of DHF and larva-free rate and climate data on rainfall, humidity, air temperature, and duration of sunlight obtained from the Meteorology and Geophysics Agency (BMKG). Silver station in Surabaya, the distribution of dengue incidence during 2018-2020. Results and Discussion. The results showed that humidity was correlated with the larvae-free rate. Meanwhile, the larva-free rate did not correlate with the number of DHF cases. DHF control is estimated due to the correlation of climatic factors and the incidence of DHF, control of vectors and disease agents, control of transmission media, and exposure to the community. Conclusions. The integration of DHF control can be used for early precautions in the era of the COVID-19 pandemic by control-ling DHF early in the period from January to June in Surabaya. It is concluded that humidity can affect the dengue outbreak and it can be used as an early warning system and travel warning regarding the relative risk of DHF outbreak.Copyright © the Author(s), 2023.

SÉLECTION CITATIONS
Détails de la recherche